logo
logo

9. Literaturangaben

Gliederung

1. Zusammenfassung

2. Einleitung

3. Der Begriff Epigenetik

4. Unerklärliche Beobachtungen?

5. Epigenetische Mechanismen

6. Erklärung des Unerklärlichen

7. Laborversuche zur Beeinflussung epigenetischer Mechanismen

8. Diskussion

9. Literaturangaben

9. Literaturangaben (letzter Zugriff auf Homepages erfolgte am 19.10.2010):

Aufsatz, W. et al. (2002). RNA-directed DNA methylation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, Volume 99, Suppl. 4, 16499-16506

Bagasra, O. et al. (2004). RNA interference: The molecular immune system. Journal of Molecular Histology, Volume 35, 545-553

Bauer, E. et al. (2006). Green Tea, the „Asian Paradox,“ and Cardiovascular Disease. Journal of the American College of Surgeons, Volume 202, Issue 5, 813-825

Bygren, L.O. et al. (1999). Longevity Determined by Paternal Ancestors‘ Nutrition during Their Slow Growth Period. ACTA BIOTHEORETICA, Volume 49, Number 1, 53-59

Bygren, L.O. et al. (2002). Cardiovascular and diabetes mortality determined by nutrition during parents‘ and grandparents‘ slow growth period. European Journal of Human Genetics, Volume 10, Number 11, 682-688

Bygren, L.O. et al. (2006). Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics, Volume 14, 159-166

Bygren, L.O. et al. (2007). Transgenerational response to nutrition, early life circumstances and longevity. European Journal of Human Genetics, Volume 15, 784-790

Charles Darwin, (1859), On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray John, London

Colman, R.J. et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, Volume 325, Number 5937, 201-204

Cooney, C.A. et al. (2002). Maternal Methyl Supplements in Mice Affect Epigenetic Variation and DNA Methylation of Offspring. The American Society for Nutritional Sciences, Volume 132, Issue 8, 2393S-2400S

Cropley, J.E. et al. (2006). Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proceedings of the National Academy of Sciences, Volume 103, Number 46, 17308-17312

Jean-Baptiste de Lamarck, (1809), Philosophie zoologique, ou, Exposition des considérations relative à l’histoire naturelle des animaux.

Evers, M. (2003). Klonen für die Katz. Der Spiegel, Ausgabe 13

Francis, D. et al. (1999). Nongenomic Transmission Across Generations of Maternal Behavior and Stress Responses in the Rat. Science, Volume 286, Number 5442, 1155-1158

Georges, M. et al. (2003). The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends in Genetics, Volume 19, Issue 5, 248-252

Goll, M.G. et al. (2002). Histone modification and replacement in chromatin activation. Genes & Development, Volume 16, 1739-1742

Jaenisch, R. et al. (2007). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, Volume 33, 245 – 254

Johannsen, W. (1917). Die Vererbungslehre bei Aristoteles und Hippokrates im Lichte heutiger Forschung. Die Naturwissenschaften, Volume 5, Number 24, 389-397

Liu, D. et al. (1997). Maternal Care, Hippocampal Glucocorticoid Receptors, and Hypothalamic-Pituitary-Adrenal Responses to Stress. Science, Volume 277, Number 5332, 1659-1662

McClintock, B. (1950). The origin and behavior of mutable loci in maize. Genetics, Volume 36, 344-355

Napoli, C. et al. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant Cell, Volume 2, 279-289

Okano, M. et al. (1999). DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell, Volume 99, Issue 3, 247-257

Payer, B. et al. (2008). X chromosome dosage compensation: how mammals keep the balance. Annual Review of Genetics, Volume 42, 733-772

Rutherford, S.L. & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, Volume 396, 336-342

Sollars, V. et al. (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genetics, Volume 33, 70-74

Waterland, R.A. et al. (2006). Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis, Volume 44, Issue 9, 401-406

Internetquellen:

1 http://epigenome.eu/de/1,1,0

2 http://de.wikipedia.org/wiki/Epigenese

3 http://www.pharmazeutische-zeitung.de/index.php?id=853

4 http://abenteuerforschung.zdf.de/ZDFde/inhalt/5/0,1872,7950789,00.html

5 http://www.worldlingo.com/ma/enwiki/de/Dutch_famine_of_1944/1

6 mms://ondemand.msmedia.zdf.newmedia.nacamar.net/zdf/data/msmedia/3sat/09/01/090112_mahlzeiten_hitec_vh.wmv

7 http://www.focus.de/gesundheit/gesundleben/antiaging/lifestyle/ernaehrung/okinawa-phaenomen_aid_27926.html

Weiterführende Literatur:

Allis, C.D. et al (Hg.): EPIGENETICS. 1.Auflage. New York: Cold Spring Harbor Laboratory Press, Paperback Edition 2009

Quellen der Abbildungen:

Abb.1: Griffith Experiment
Author: Madprime
License:CreativeCommons by-sa-2.5-generic,
URL: http://de.wikipedia.org/w/index.php?title=Datei:Griffith_experiment.svg&filetimestamp=20070322041725

Abb.2: Lage von Överkalix (rot)
Author: Fred J
License:CreativeCommons by-sa-2.5-generic,
URL: http://commons.wikimedia.org/wiki/File:%C3%96verkalix_kommun.png

Abb.4: Barr-Körperchen, Xa(aktiviert) & Xi(inaktiviert)
Author: Steffen Dietzel
License:CreativeCommons by-sa-3.0-Unported,
URL: http://commons.wikimedia.org/wiki/File:Sd4hi-unten-crop.jpg

Abb.5: Schildpattmuster bei einer weiblichen Katze als Beispiel für Zellmosaikbildung
Author: Ksmith4f
License: public domain,
URL: http://de.wikipedia.org/wiki/Datei:Curlycat02.jpg

Abb.6: Aufbau eines Nukleosoms aus Histonen
Author: Richard Wheeler
License:CreativeCommons by-sa-3.0-Unported,
URL: http://de.wikipedia.org/w/index.php?title=Datei:Nucleosome_structure.png&filetimestamp=20061001175111

Abb.7: Packung der DNA um Nukleosomen
Author: Joost de Jong
License:CreativeCommons by-sa-3.0-Unported,
URL: http://commons.wikimedia.org/wiki/File:Nucleosoom.png

Abb.8: RNA-Interferenz bei Petunien
Author: Marjori A. Matzke, Antonius J. M. Matzke; credit Jan Kooter for the left and middle images, and Natalie Doetsch and Rich Jorgensen for the right images
License:CreativeCommons by-sa-2.5-Generic,
URL: http://en.wikipedia.org/wiki/File:Rnai_phenotype_petunia_crop.png

Abb.9: Mechanismus der RNA-Interferenz
Author: PhilippN
License: CreativeCommons by-sa-2.5-US-amerikanisch,
URL: http://commons.wikimedia.org/wiki/File:SiRNA_and_RNAI_german.png?uselang=de

Abb.10: Mäuse mit Axin(Fu)-Allel aber unterschiedlicher Methylierung
Author: Photograph courtesy of Emma Whitelaw, University of Sydney, Australia.
License: CreativeCommons by-sa-2.5-generic,
URL: http://commons.wikimedia.org/wiki/File:Cloned_mice_with_different_DNA_methylation.png

vorherige Seite – Gliederung 1 2 3 4 5 6 7 8 9

[printfriendly]

Durch die weitere Nutzung der Seite stimmst du der Verwendung von Cookies zu. Weitere Informationen

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden. Weitere Informationen dazu unter Datenschutz

Schließen